
0 
 

Paper submission for the Jahrbuch für Handlungs- und Entscheidungstheorie Bd. 10, 2016 

 

 

Mitigating the Problem of Manipulation  

in the ‘Adjusted Winner’ Procedure 

 

 

The ‘Adjusted Winner’ procedure (AW) is a mechanism to reach fair 
agreements in bargaining situations over a fixed set of objects. A major 
shortfall of AW for both mediators and participants is that it relies on 
participants’ honesty, which makes it open for manipulation. In a gen-
eral model of AW for two objects and continuous manipulation strate-
gies, it is shown that a) manipulation is always risky since potential 
losses are always larger than potential gains; and b) there exists an equi-
librium of symmetric manipulation and with equal threat of potential 
losses that leads to exactly the same outcome as truthful behavior. 
These findings imply that the problem of manipulation in AW is miti-
gated. 
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1.  Introduction 

Bargaining is a ubiquitous feature of social interaction. Politicians negotiate agreements fre-

quently – be it the post-election bargaining over offices or the settlement of international dis-

putes. In people’s daily lives, bargaining and conflict play an equally important role: Take for 

example haggling at a car dealership or pay-raise negotiations with an employer. 

A central issue in bargaining is the question of fairness. Fairness in general has stirred theoret-

ical-philosophical enquiry across many disciplines; from Plato’s formula ‘that each should get 

what he deserves’ to John Rawls’ (1985) ‘Justice as Fairness’. In addition, economists like John 

F. Nash (1950) tried to find a rational and, as he claimed: A solution fair solution in bargaining 

situations (Nash 1950, p. 158). 

Furthermore, evidence from psychological experiments suggests that some people exhibit a 

preference for fairness. As outlined for example by Fehr and Schmidt (1990), people are willing 

to sacrifice their own gains for the sake of the gains of others in simple ultimatum bargaining 

experiments. 

The question of fairness in bargaining is mostly asked from an outside point of view, which 

asks: Given the characteristics of the situation and the players, what can be considered a just 

distribution according to external principles? In contrast, individuals within such situations are 

often assumed to only care about benefitting individually. While it seems that these questions 

are separate from each other, one main point of this paper is to argue that – especially for prac-

tical purposes – they should be thought about together.   

Evidence from psychological experiments suggests that some people exhibit a preference for 

fairness. As outlined for example by Fehr and Schmidt (1990), a small number people are will-

ing to sacrifice their own gains for the sake of the gains of others in simple ultimatum bargaining 

experiments. The benefit of posing the additional question of incentive compatibility is that, 

instead of trusting people’s adherence to fair solutions, distributional mechanisms in which in-

dividual incentives lead to fair outcomes can be found. I discuss this problem of incentive-proof 

fair division for the ‘Adjusted Winner’ (AW) procedure by Brams and Taylor (1999) because 

AW is a practically interesting fair division procedure and a vivid example of the described 

dilemma. 

In part two, I describe how the AW procedure works, why it can be said to lead to a fair outcome 

and give an example of a practical application of the method. I go on to argue that while prac-

tical issues limit the scope of AW’s applicability, the problem of manipulation poses a more 
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severe and even fundamental threat to it: If players manipulate, the fairness properties of the 

AW solution can no longer be guaranteed. 

The main contribution of this paper, located in part three, is the description of a model that 

envisages AW as a strategic game with continuous manipulation strategies for the case of dis-

tributing two objects. Through the introduction of continuous strategies, the model in this paper 

fundamentally diverges from previous approaches, such as Schüssler’s (2007) who discusses a 

situation with a binary strategy choice. 

The model yields two remarkable findings that mitigate the problem of manipulation in AW. 

First, the model shows that the maximal potential gains from manipulation are always smaller 

than the minimal losses in case manipulation fails. This implies that a manipulative strategy is 

dangerous for a manipulating player if she is not entirely sure about her opponent's valuation 

or strategy. 

Second, if both players simultaneously announce their manipulated preferences, a Nash equi-

librium exists which results in the same payoffs as in the case where both players announce 

their valuations truthfully. This specific Nash equilibrium is an appealing solution because it is 

symmetric and both players face the same potential loss through deviation from their strategy. 

Furthermore, as long as both manipulate equally strongly and do not change the initial distribu-

tion of objects, the appealing properties of the AW solution are preserved. This suggests that 

the problem of manipulation in AW is mitigated. To show this, I start by outlining the AW 

procedure in the next section. 

2. The AW Procedure 

2.1  How does AW work? 

Adjusted Winner can be employed to allocate a fixed number of objects between two1 players 

fairly. The objects at stake are assumed to be arbitrarily divisible and linear in their utility when 

divided. Also, the utility of having one object is independent from having any other objects. 

These requirements are admittedly strong and lead to rather strict limitations for AW, which 

will be further discussed in light of the example of the Camp David negotiations below. 

AW proceeds in three steps. The first step for the players is to assign a total of 100 points to the 

objects at stake, whereas their allocation of points must reflect their preferences about these 

objects. Through that step, AW surveys and normalizes the players’ preferences in an easy and 

                                                
1 Note that the generalization to n players has consequences for AW. The procedure becomes more complicated 
and loses some of its appealing properties. 
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understandable way. However, note that this step requires a cardinal interpretation of utility: If 

a solely ordinal utility scale was assumed, any allocation of points that puts the objects in the 

same order would be indistinguishable. 

In the second step, the distribution of the objects is carried out: Each object goes to the player 

who gave the object more points in the first step. In the case where an object has received equal 

points from both players, the object goes to the player who received fewer points so far.  

In a last step, the gains from step two are 'adjusted': The object which is most similar in valua-

tion is partly transferred from the 'richer' player to the 'poorer' player until both are in the pos-

session of (shares of) objects to which they have assigned the same amount of points.  

The term 'most similar in valuation' refers to the ratio of the players’ point allocations to the 

same objects O, i.e. 𝑟" =
$%&'(
$)**%

. The closer this ration is to one, the more similar in valuation is 

the object for the two players. Of course, only objects with  𝑣,-./ > 	𝑣2"", can be redistributed. 

If one object's complete redistribution does not suffice to equal out the player's points, the pro-

cedure continues analogously with the good which is now the most similar in valuation and still 

belonging to the richer player. In summary, the three steps are as follows: 

 Step 1: Both players allocate 100 points truthfully to the objects at stake. 

 Step 2: Each object goes to the player who allocated more points to it. Objects with  

 equal points go to the player who received fewer points in total so far. 

 Step 3: The object for which the valuation is most similar is partially redistributed so  

 that both receive objects worth the same amount of points.  

A simple example can illustrate the steps of AW (see Brams and Taylor 1999, p. 72). Consider 

two players facing the task of distributing five not further specified objects A, B, C, D and E. 

In step 1, the players allocate their 100 points as shown in Table 1: 

Table 1: An exemplary point allocation for AW   

Object Player 1 Player 2 

A 50 40 

B 20 30 

C 15 10 

D 10 10 

E 5 10 
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The higher valuation for each object is underlined. In step 2, player 1 receives objects A and C, 

while player 2 receives B and E. Object D also goes to player 2, because she has only received 

objects worth 40 points to her, while player 1 has received 65 points. 

Step 3: Player 1 is richer (65 points vs. 50 points so far). The object closest in valuation that has 

been given to player 1 is A with a ratio of 𝑟3 = 1.2, while for object C, 𝑟7 = 1.5. Therefore, A 

must be redistributed so that they have objects worth equal points to them afterwards. 

To calculate how much of A must change hands, let x be the percentage of object A that will be 

transferred from player 1 to player 2. The condition that player 1 and 2 must have objects of the 

same point-value after the transfer translates into the following equation: 

 𝑢: 𝐶 + 1 − 𝑥 ∗ 𝑢: 𝐴 = 𝑢A 𝐵&𝐷&𝐸 + 	𝑥 ∗ 𝑢A(𝐴) 

This leads to the following equation via plugging in the actual numbers: 

 15 + 1 − 𝑥 ∗ 50 = 50 + 𝑥 ∗ 40. 

Solving for 𝑥 yields 𝑥 = 1/6. This means that player 1 has to give 1/6 of A to player 2. The 

final allocation is: Object C and 5/6 of A go to player 1; B, D, E and 1/6 of A go to player 2. 

Each player therefore receives objects worth 56.67 points to her. 

2.2  Why should the outcome of an AW process be considered fair? 

Raith (2000) shows that AW yields the Kalai-Smorodinsky Bargaining Solution (KSBS). The 

KSBS is the only solution that fulfills a certain set of axiomatic requirements (see Kalai and 

Smorodinsky, 1975). That AW or the KSBS carries a central notion of fairness is expressed in 

the following axioms.  

The symmetry axiom demands that indistinguishable players receive the same payoffs. Or put 

shortly: Equals should be treated equally. The monotonicity axiom accounts for how to treat 

players with different preconditions. It requires that a player should not be worse off if the space 

of feasible solutions is increased in her favor, or intuitively: ‘new options for a player should 

never be a disadvantage’. 

The KSBS can be derived as the unique solution when symmetry, monotonicity as well as Pa-

reto-efficiency and positive linear transformability of utility functions are required as further 

axioms. In the KSBS, each player has her best outcome satisfied to the same extent, and it is 

the solution that benefits each player the most. 

Since AW yields the only solution that embodies these axioms of fairness all at the same time, 

it can be considered a fair mechanism that results in a fair outcome. Certainly, one can disagree 
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with the particular notion of fairness employed here, and how it is captured in the axioms. 

Nonetheless, it is a reasonable and analytically sound argument that formalizes those principles 

and gives a clear derivation of their implication.  

Those abstract properties translate into the practical merits of envy-freeness, efficiency and 

equitability (Brams and Taylor 1999 p. 69). AW’s solution is envy-free because in the resulting 

allocation, neither player would want to exchange her final bundle of objects with the other 

player. It is efficient because no Pareto-improvements are possible in the final allocation. It is 

equitable (or fair) in the sense of the KSBS, that each player’s optimal preference is realized to 

the same degree. Based on this theoretical argument, it is reasonable to adhere to the AW solu-

tion as a fair outcome. 

2.3 An example: AW and the Camp David Accords 

Brams and Taylor (1999, p. 69) also argue that AW can be performed in a relatively simple 

way. While this may be true for the steps of the mechanism itself, the range of applicability is 

a crucial challenge for AW. Doubtlessly, there are severe limitations that come along with its 

requirements. Divisibility, linear and independent utility are met only by very few objects. 

However, even though this may render AW inapplicable in a variety of situations, there are still 

cases where those requirements are at least reasonable approximations of reality.  

The example of the negotiations between Egypt and Israel, which took place in Camp David, 

USA, in 1978 illustrates this. The Camp David talks were the conclusion of a long process of 

peace talks after several violent conflicts between the two countries. After 13 days of negotia-

tions, leaders of both parties finally signed an agreement, later to be known as the 'Camp David 

Accords'. 

Brams and Taylor (1999, p. 89ff) use AW to assess whether the outcome of the Camp David 

negotiations was fair for both parties. They identify six major issues in the process and recon-

struct the Israeli and Egyptian preferences based on expert judgments. Those are described in 

Table 2 below. 
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Table 2: Issues and implied point allocation in the Camp David negotiations 

Issue Israel Egypt 

Sinai 35 55 

Diplomatic recognition 10 5 

West Bank / Gaza strip 20 10 

Linkage 10 5 

Palestinian rights 5 20 

Jerusalem 20 5 

Issues 1, 3 and 6 stand for having control over the respective area. Issue 2 stands for diplomatic 

recognition of Israel, which Israel favored and Egypt opposed. Equally, Palestinian rights were 

advocated by Egypt, and not recognized by Israel. Linkage embodies Egypt's claim that the 

success of the negotiations at hand must be formally linked to the progress of recognition of 

Palestinian autonomy. In these three latter cases, 'winning' would mean to get one's way in the 

decision (see Brams and Taylor 1999, p. 91ff for a more elaborate description and discussion 

of the issues). 

AW's solution would prescribe that issues 1 and 5 go to Egypt, while issues 2, 3, 4 and 6 are 

ascribed to Israel. Then, to even out point gains, 1/6 of the issue 'Sinai' must be redistributed 

to Israel. With the final distribution, each player receives objects worth 66.7 points. 

Brams and Taylor argue that the actual outcome after the talks closely resembles the solution 

that is prescribed by AW. All issues were allocated accordingly; the division of the issue 'Sinai' 

was accomplished through the following compromise: Israeli military bases and civil settle-

ments were removed, but the Sinai Peninsula was demilitarized and U.S. troops were stationed 

to monitor the enforcement of the agreement. According to Brams and Taylor (1999., p. 97), 

this can be envisaged as a redistribution of 1/6 of the issue. Thus, they argue, the analysis using 

AW allows to qualify the Camp David agreement as fair. 

Note that Brams and Taylor employ AW in a manner of a ‘hypothetical procedure’. AW was 

not actually used during the Camp David talks. The actual outcome from Camp David is merely 

compared to the fair outcome that AW would have prescribed. 

 

 



7 
 

2.4  General Problems for the Application of AW 

There are several practical issues that could be discussed at this point: Are the identified issues 

really independent from one another? Can the agreement on the Sinai issue be considered a 

1/6th- split? Could the other issues have been split as well if the procedure had required it? How 

reliable is the point allocation based on expert judgments?  

Certainly, if one wants to apply AW as an actual negotiation tool, it is always problematic 

whether or not those conditions are fulfilled. Certainly, there will be cases where the issues at 

stake do not allow the application of AW because dependencies and non-linearities are too 

strong. Yet, there are cases that meet the conditions of AW in reasonable approximation as in 

the Camp David case. One therefore needs to be aware of those issues, be able to handle them 

or use AW only in situations where they apply sufficiently well. 

However, there is a more severe problem for the application of AW as an actual negotiation 

tool. This is the problem of manipulation. Given that the involved actors know how the mech-

anism works, they should be assumed to be trying to shift outcomes in their favor. Therefore, 

to convince actors of the usefulness of AW, one should appeal to individual incentives rather 

than benevolence or a desire for fairness. Instead of a cooperative mechanism, AW then be-

comes a strategic game between rational actors. AW (like other fair division mechanisms) must 

be able to work under the assumption of selfish utility maximizers. If actors were cooperative 

anyways, there would be no need for a dispute settling mechanism. 

2.5 Optimal Manipulation in the Camp David Example 

Schüssler (2007, p. 290f) scrutinizes the Camp David example and assesses strategies of ma-

nipulation in the case where the true valuations are known by the other side. An intuitively 

optimal manipulation strategy, given that the opponent announces truthful valuations, is to win 

the same issues as in AW, but to win each issue only by a slight margin. One can then allocate 

the ‘saved’ points to the issues the manipulating player loses. This leads to either a higher share 

being redistributed to the manipulating player, or the manipulating player has to give up less of 

her goods through redistribution. 

For instance, following the above strategy intuition most closely, Israel could announce the 

point scheme 53, 6, 11, 6, 18, 6 in the Camp David example, as depicted in Table 3 below. 
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Table 3: Truthful and manipulated point allocations in the Camp David example 

Issue Israel  
(true) 

Israel  
(manipulated) 

Egypt 
(true) 

Sinai 35 53 55 

Diplomatic recognition 10 6 5 

West Bank / Gaza strip 20 11 10 

Linkage 10 6 5 

Palestinian rights 5 18 20 

Jerusalem 20 6 5 

In that case, the first round distribution of AW would remain the same as before. However now, 

Israel receives issues worth only 27 points (according to the manipulated point allocation), 

while Egypt still gains 75 first- round points. Through the AW redistribution mechanism, 

12/27 of Sinai must now be given to Israel. Israel's payoff (for which its true valuation from 

the table above is used) is then a satisfaction of interests worth 75 points compared to 66.7 

points for truth telling. Egypt's satisfaction would be reduced to 51 points through Israel's ma-

nipulation. 

Schüssler shows that with a similar strategy, Egypt could even gain 79 points and reduce truth-

telling Israel's satisfaction to 51 points. Yet, if both parties announce their manipulated valua-

tions, both would receive only 34 points: The efficient allocation of objects would be reversed 

and each would get those objects she likes less.  

Given a binary choice between manipulating (in this particular way) or being truthful, this 

would leave the players in a 'chicken game': Whoever convinces the other that she will manip-

ulate will force the other to comply by stating her true preferences (since this is the best response 

to the described manipulation strategy). There are two pure strategy equilibria (one manipula-

tor, one truth-teller) and one mixed-strategy Nash equilibrium. For applications of AW, this 

would be a problem because it is not clear how players would act, and manipulation must be 

expected to occur at least with a certain probability. The situation is depicted in Table 4 below 

in normal form (see also Schüssler 2007., p. 290). 
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Table 4: AW as a strategic game in the Camp David example with binary strategy choice 

  Israel 

  truth-telling manipulate 

Egypt 
truth-telling 66.7	/	66.7 51	/	71	

manipulate 79	/	51	 34	/	34	

 

Schüssler's description simplifies the situation in one central regard: It models the actors’ strat-

egy choice as binary. One can either manipulate (in an optimal way, given that the other player 

is truthful) or be truthful. This reduces the space of options considerably. Given how AW func-

tions, each player can announce any valuation she wants. Hence, also manipulating ‘a little bit’ 

is feasible. In the following section, I account for this possibility of continuous manipulation 

for both players. However, this modeling approach limits itself to a generic case with only two 

goods. Generalizing those results to the case of n goods is far from straight forward and involves 

manifold mathematical complications. Thus, the analysis here is limited for the sake of clarity 

and solvability in order to get first insights before tackling the more complicated n items case. 

3. A General Model for Manipulation in AW 

This section develops a model of manipulation in AW with continuous strategies for the case 

of two objects. In the model, both players can choose to announce any valuation for the objects 

at stake. The model shows that the threat of manipulation is mitigated because manipulation is 

risky and mutual manipulation can cancel out. 

Due to the complexity of the mathematical analysis, all results are derived for the case of two 

players (1 and 2) with only two objects (A and B). This, of course, has an impact on the gener-

alizability of the findings, which will be discussed afterwards. Further, all the practical require-

ments for AW will be assumed to be fulfilled. This means that A and B's utility are linear for 

shares of objects, and the utility from having a share of A is independent from one's share of B 

(and vice versa). While the discussion of those aspects is also of high relevance, they are more 

suited for empirical analysis rather than an abstract-mathematical approach as the one taken 

here; this paper focusses on the threat through manipulation. 
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3.1  Setup and Payoff Functions 

Let 𝑣O denote player 𝑖's true valuation for object A (i.e. the percentage of points she would 

truthfully allocate to object A in AW). It is assumed that 0 < 𝑣O < 1, which means that both 

players have at least some interest in each individual good. It follows that player 1's valuation 

for object B must be 1 − 𝑣O. The same is true for player 2. Also, 𝑣O is a continuous variable, so 

that any real fraction of whole points can be allocated. Table 5 below depicts the notations for 

the true valuations. 

Table 5: Notation for both player’s true valuations 

 Player 1 Player 2 

Object A 𝑣: 𝑣A 

Object B 1 − 𝑣: 1 − 𝑣A 

Further, assume 𝑣: > (1 − 𝑣:) without loss of generality. This is just the convention to choose 

object A to be the object that player 1 likes more. 

Let 𝑣- denote the valuation which player 𝑖 announces. This is the value that affects the distri-

bution from AW. Further, 𝑣- ∈ 0,1 	∀𝑖 and 𝑣- is also continuous. For a truthful player, the 

announced valuation is equal to her real valuation, hence 𝑣O = 𝑣-. Both players can also choose 

to manipulate by announcing a valuation 𝑣- ≠ 𝑣O. Again, it is assumed that all points are allo-

cated, meaning that player 𝑖 announces 𝑣- for object A, and  1 − 𝑣- for object B. 

The first important step is identifying the player's payoff functions. The following section will 

reconstruct this for player 1, since this is the point of view taken henceforth. Player 2's payoff 

function can be obtained simply by switching indices. 

Player 1's payoff function depends on her true valuation 𝑣:, which is a not further specified 

random parameter. The payoff function is further determined by both players’ strategic an-

nouncements 𝑣: and 𝑣A, which they can choose freely. Two factors must be distinguished for 

calculating the payoff function:  

First, did player 1 announce a higher valuation for object A than player 2 did? This question 

decides whether player 1 receives object A or object B initially. In mathematical terms, is 𝑣: >

𝑣A ? If yes, she will be given object A in step 2 of AW. If not, she gets object B. 

The second question is: Which player realized more points in step 2 of AW? This question 

decides whether player 1 has to give something to player 2, or vice versa. For instance, if 𝑣: >

𝑣A and therefore player 1 received A and player 2 received B, the question is: Is 𝑣: < (1 − 𝑣A), 
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or the other way around? The player who received more will have to give up a share of her 

object in order to equal out points. In total, this results in four cases that stem from these two 

questions. Fig. 1 visualizes those four cases. Those cases can be described in colloquial lan-

guage as follows: 

a) Player 1 receives A and gives parts of A to player 2 

b) Player 1 receives A and receives parts of B from player 2 

c) Player 1 receives B and gives parts of B to player 2 

d) Player 1 receives B and receives parts of A from player 2 

 

Fig. 1: Visualization of all possible constellations of 𝑣: and 𝑣A 

 

 

  

 

Note that even though it is assumed that 𝑣: > 1 − 𝑣:, this must not necessary hold for 𝑣:. Player 

1 can very well chose to announce a valuation below 0.5 for object A, even if her true valuation 

for A is assumed to be larger than 0.5. 

Consider case (a) where 𝑣: > 𝑣A and 𝑣: > 1 − 𝑣A. In the initial allocation of objects, player 1 

receives object A; player 2 receives object B. Since by assumption 𝑣: > 1 − 𝑣A, player 1 real-

ized more points in step 2, hence 𝑥 percent of good A must be redistributed from 1 to 2. 

The relevant condition for the calculation of 𝑥 is that both players have equal overall points 

after redistribution. Player 1 gives up 𝑥 percent of A, while Player 2 receives 𝑥 percent of A. 

Note that for the calculation of 𝑥, only the announced valuations are relevant. This leads to the 

following equation: 

   1 − 𝑥 ∗ 𝑣: = (1 − 𝑣A) + 𝑥 ∗ 𝑣A 

   𝑥 = VWXVYZ:
VWXVY

= 1 − :
VWXVY
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For the calculation of the payoff, the true valuations must be employed since these are the 

values that determine a player’s actual payoff. In the final allocation, player 1 holds 1 − 𝑥  of 

good A, therefore her payoff is 

   𝑃:
\ = 1 − 𝑥 ∗ 𝑣: 

   𝑃:
\ = 1 − (1 − :

VWXVY
) ∗ 𝑣: 

   𝑃:
(\) = VW

VWXVY
 

The calculations for the other three cases run along similar lines and are given in appendix 1. 

Table 6 below gives the payoff function for player 1 for all four cases. Note that all 𝑃-’s are a 

function of variables 𝑣: and 𝑣A, hence 𝑃-(𝑣:, 𝑣A). This is omitted for the sake of brevity and 

will be denoted only as 𝑃-. 

Table 6: Payoff functions for player 1 

 𝒗𝟏 > 𝒗𝟐 𝒗𝟏 < 𝒗𝟐 

𝟏 − 𝒗𝟏 < 𝒗𝟐 

𝒗𝟏 > 𝟏 − 𝒗𝟐 
(a)  𝑃:

(\) = VW
VWXVY

 (b)  𝑃:
(`) = 1 − VW

VWXVY
 

𝟏 − 𝒗𝟏 > 𝒗𝟐 

𝒗𝟏 < 1 − 𝒗𝟐 
(c)  𝑃:

(.) = 1 − (:ZVW)
(:ZVW)X(:ZVY)

 (d)  𝑃:
(a) = :ZVW

(:ZVW)X(:ZVY)
 

 

3.2  Optimal Manipulation against a Truthful Player 

Now assume that player 2 will always announce her true valuation, i.e. 𝑣A = 𝑣A. First, the op-

timal manipulation strategy for player 1 in this case is discussed. It can be generally shown that 

player 1's optimal manipulation strategy is to let 𝑣: approach 𝑣A, thus proving for two objects 

what Schüssler (2007) described on an intuitive level for more than two objects. However, as 

the subsequent section shows, this strategy is very dangerous because the maximal gains from 

optimal manipulation (compared to an honest strategy) is always smaller than the loss player 1 

would suffer from only the slightest over-manipulation. 

Technical hint: It is implicitly assumed that, if 𝑣: is exactly on the border of two payoff func-

tions, player 1 can 'choose' which of the two bordering payoff functions is used. The correct 

notation for this would be for instance 𝑣: = lim
e→g

(𝑣A − 𝜀) for 𝜀 > 0 to show that 𝑣: approaches 

𝑣A from below, so that still the payoff function for the case 𝑣: < 𝑣A is applicable. This detailed 
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notation is omitted here for the sake of brevity. Originally, AW prescribes that in case of equal 

points, the object goes to the player with fewer total points, and is then potentially redistributed. 

The problem of ‘choosing a payoff function’ does not occur in the original AW-procedure, 

since payoffs are the same under both functions.  

Under the assumption 𝑣: > (1 − 𝑣:), three different constellations for 𝑣: and 𝑣A can occur. 𝑣A 

can be either in region I, II or III in relation to 𝑣:, as depicted in Fig. 2 below. 

Fig. 2: Three possible constellations of true valuations 

 

In the following, the optimal manipulation strategy for constellation I will be shown. The same 

results can be obtained for constellations II and III, for which the calculations are in appendix 

2. 

For this part, assume therefore that 𝑣A lies in area I, and hence 1 − 𝑣: < 𝑣: < 𝑣A. Depending 

on player 1's choice of 𝑣:, either payoff function (a), (b), or (d) is applicable. Fig. 3 below 

depicts the regions in which the different payoff-functions apply. 

Fig. 3: Applicable payoff function depending on choice of 𝑣:  

 

• Player 1's payoff function is 𝑃:
(\) = VW

VWXVY
 for 𝑣: > 𝑣A (since it follows 𝑣: > 1 − 𝑣A ) 

Function (a) strictly decreases with 𝑣:, hence the local maximum is reached for 𝑣: =

𝑣A. The maximum payoff is then 𝑃:
(\)i\j = VW

A	VY
.  

• Player 1's payoff function is 𝑃:
(`) = 1 − VW

VWXVY
 for 1 − 𝑣A < 𝑣: < 𝑣A (since it follows 

1 − 𝑣: < 𝑣A). Payoff function (b) strictly increases with 𝑣:, hence the local maximum 
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is reached for 𝑣: = 𝑣A, which is the largest value of 𝑣:in (b). The maximum payoff is 

then  𝑃:
(`)i\j = 1 − VW

A	VY
 .  

• Player 1's payoff function is 𝑃:
(a) = (:ZVW)

(:ZVW)X(:ZVY)
 for 𝑣: < 1 − 𝑣A (since it follows 

1 − 𝑣: > 𝑣A). Payoff function (d) strictly increases with 𝑣:, hence the local maximum 

is reached for 𝑣: = 1 − 𝑣A, again the largest value of 𝑣:in (d). The maximum payoff is 

then 𝑃:
(a)i\j = (1 − 𝑣:).  

The local maxima can now be compared. Since we are still in case I where 𝑣: < 𝑣A, it follows 

that 𝑃:
(`)i\j > 𝑃:

(\)i\j. Therefore, player 1 prefers being in (b) over being in (a) in constella-

tion I. Also, 𝑃:
(`)i\j > 𝑃:

(a)i\j, which means that player 1 also prefers (b) over (d). 

Looking at the complete payoff function, the global maximum is 𝑃:i\j = 𝑃:
(`)i\j. Therefore, 

player 1's optimal strategy is to chose 𝑣: = 𝑣A but still stay in (b) and hence a little below 𝑣A 

(technically correct: 𝑣: = 𝑣A − 𝜀 with 𝜀 → 0 and 𝜀 > 0). Fig. 4 illustrates the payoff function 

for an example of constellation I with 𝑣: = 0.6 and 𝑣A = 0.7. 

Fig. 4: Exemplary payoff function for constellation I with 𝑣: = 0.6 and 𝑣A = 0.7 

 

Generally (hence also for constellations II and III, as shown in appendix 2), the optimal strategy 

for player 1 is to let 𝑣: approach 𝑣A. More specifically, if 𝑣: > 𝑣A, 𝑣: should remain larger than 

𝑣A, and if 𝑣: < 𝑣A, 𝑣: should remain smaller than 𝑣A. This is the optimal manipulation strategy 

proposed by Schüssler (2007). 
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3.3  Optimal Manipulation and the Risk of Over-manipulation 

In the case above, if player 1's optimal manipulation strategy works, her payoff against the 

honest player 2 is 𝑃:
(`)i\j = 1 − VW

A	VY
. However, if she misjudges 𝑣A and therefore manipulates 

‘too far’, the payoff function switches to 𝑃:
(\), and her payoff for failed manipulation becomes 

𝑃:
k\-l < VW

AVY
 since 𝑃:

(\) decreases with 𝑣:. Therefore, 𝑃:
k\-l = VW

AVY
 is the most player 1 can expect 

from failed manipulation. More over-manipulation reduces her payoff further. 

Compared to the strategy 'honesty' with 𝑃:/"mnop = 1 − VW
VWX	VY

, player 1 could at the most gain 

𝑔 = 𝑃:
(`)i\j − 𝑃:/"mnop. On the other hand, if her manipulation fails, she will at least lose 

𝑙 = 𝑃:/"mnop − 𝑃:
k\-l. Calculating the difference between maximal potential gains and minimal 

potential losses results in the term 𝑔 − 𝑙 = 𝑃:i\j+𝑃:
k\-l − 2	𝑃:/"mnop =

AVW
VWXVY

− 1. It is easy to 

see that 𝑔 − 𝑙 = AVW
VWXVY

− 1 < 0, since in I, 𝑣: < 𝑣A.  

This is a crucial result because it shows that the manipulation strategy which seeks to maximize 

player 1's gains through letting 𝑣: approach 𝑣A has a higher potential loss through failure than 

can maximally be gained by successful manipulation. The same result is also found for constel-

lations II and III, as shown in appendix 2. 

This result can have a strong impact on a player's incentives to manipulate. If there is uncer-

tainty about one's opponent's valuation, a player should be reluctant to follow the above optimal 

manipulation strategy. In real bargaining situations, at least some uncertainty can always be 

expected to be present. Manipulation therefore becomes less attractive. 

Even if there is no uncertainty about valuations, a truthful player could protect herself by an-

nouncing a randomization strategy, which lets her announce her true valuation plus some error 

term. This could partly prevent the other player from manipulating, since she would increase 

the risk to lose more than she could gain. Such a strategy could be employed only if a player 

can credibly communicate such a strategy, or if players play a number of times. 

To extend this type of reasoning, one would have to calculate the optimal strategy for settings 

of imperfect information. For example, one could assume a uniform (or normal) distribution of 

𝑣A over the interval [0;1] and check what player 1's optimal strategy would be for a given 𝑣:. 

However, this would go beyond the scope of this paper. The reasoning presented thus far shall 

nonetheless hint upon the fact that truth-telling might be a promising candidate for an optimal 

strategy in certain settings. 
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3.4  Mutual Manipulation 

Previously, player 2 was assumed to announce her valuation truthfully. This section considers 

the situation of two manipulative players, which is in a way the worst case scenario when using 

AW. Yet, it is probably not only the most realistic assumption, but certainly the crucial test case 

for AW. 

Schüssler (2007) considers the case for n objects and where players can choose between truth-

telling and the optimal manipulation strategy from above. For this setting, he argues that the 

binary choice between manipulation and truth-telling renders the players in a chicken game. In 

this section I argue that this changes once manipulation is characterized in the continuous fash-

ion proposed in this paper. Both players can choose not only whether or not to manipulate; they 

can also choose how much they want to manipulate, i.e. what valuation they want to announce. 

The considerations from the previous section were already based on that assumption. The opti-

mal strategy from above was only derived as the best response to a truthful player. The same 

result would also occur if one player had a first-mover's advantage: Through committing to the 

above optimal manipulation strategy, she could force the other player to state her true prefer-

ences, which is the best response to said strategy. 

If the players have to announce their valuations simultaneously, the situation is very similar to 

Nash’s demand game (Nash 1953). The announced valuation is the analog to the announced 

demand. This is an appropriate way of looking at AW as a strategic game because when valu-

ations are supposed to be announced truthfully, open haggling should not be expected to occur. 

Mediators should further be able to enforce simultaneous valuation announcement, since one 

runs into much deeper troubles if this is not the case. From a theoretical point of view, this is 

also the simplest form of describing a symmetric situation in which neither player has a struc-

tural advantage. This is why this valuation-demand game shall be analyzed thereafter. 

To begin with the strategic analysis, consider again constellation I from the previous section, 

where 𝑣A > 𝑣: > 1 − 𝑣A , depicted in Fig. 2. As long as 𝑣: < 𝑣A, the players haggle about how 

much of object A is redistributed from player 2 to 1. These will be called the 'compatible' cases, 

because the initial distribution of objects remains efficient. As soon as 𝑣: > 𝑣A, the manipula-

tion strategies fail because payoff functions switch from (b) to (a) for player 1, and from (a) to 

(b) for 2. The outcome becomes inefficient. 

Formalizing these intuitive arguments, a Nash-equilibrium in the valuation-demand game must 

fulfill the requirement that the two valuations are the same in the limit. If it is assumed that in 
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case equal valuations are announced, the players decide who receives which object in AW step 

2, they will always choose to allocate objects in accordance with the true valuations. This means 

that they will choose the better payoff function to apply for each of them. If they did not, both 

players would be worse off. 

Hence every Nash equilibrium must fulfill the condition 𝑣: = 𝑣A = 𝑣. If, for instance in a situ-

ation of constellation I, player 1 would lower 𝑣: in comparison to the Nash equilibrium with 

𝑣: > 𝑣 > 𝑣A, she would render demands incompatible and decrease her payoff. By increasing 

𝑣: back towards 𝑣:, she would also decrease her payoff since the amount of object A that she 

has to redistribute to 2 would become larger. Thus, no unilateral deviation from this strategy 

can be profitable for her, and a beneficial deviation is always possible if 𝑣: = 𝑣A = 𝑣 does not 

hold. 

The main difference to this game and the original Nash demand game is the structure of payoffs. 

In the original demand game, payoffs are the respective demands themselves for compatible 

demands, and zero for both players in case of incompatibility. The payoffs here (for constella-

tion I) are 

• 𝑃:
(`) = VW

VWXVY
 and 𝑃A

(\) = 1 − VY
VWXVY

 for compatible demands with 𝑣: ≤ 𝑣A, and 

• 𝑃:
(\) = 1 − VW

VWXVY
 and 𝑃A

(`) = VY
VWXVY

 for incompatible demands with 𝑣: > 𝑣A. 

The incompatibility payoff is not zero, it is not even constant in the AW-manipulation-game. 

Therefore, the question which Nash equilibrium will be selected cannot be answered unambig-

uously. 

3.5  The Threat-equivalent Equilibrium 

However, there is one Nash equilibrium with a special appeal to it. This is the equilibrium where 

both players face the same loss in case demands become incompatible. Call this the threat-

equivalent equilibrium. In that equilibrium, both players have the same capacity to threaten the 

other player into behaving compatibly. In every other Nash equilibrium, one player faces a 

higher potential loss through incompatibility than the other player. 

If any other equilibrium were to be chosen, one player could threaten the other and argue as 

following: 'If you do not reduce your demand, I will render mutual demands incompatible. You 

would lose more than me through my move, therefore I urge you to reduce your demand.' She 

could make this argument exactly up to the point where both could threaten each other with the 

same potential loss. This is the threat-equivalent equilibrium. 
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To calculate this equilibrium strategy, the equilibrium payoff of player 1 minus her potential 

loss at this equilibrium point must be equal to player 2's equilibrium payoff minus 2's potential 

loss. 

𝑃:
\ (𝑣, 𝑣) − 𝑃:

` (𝑣, 𝑣) = 𝑃A
` (𝑣, 𝑣) − 𝑃A

\ (𝑣, 𝑣) 

𝑣:
2𝑣 +

𝑣:
2𝑣 − 1 = 1 −

𝑣A
2𝑣 −

𝑣A
2𝑣 

𝑣:
𝑣 − 1 = 1 −

𝑣A
𝑣  

𝑣 =
𝑣: + 𝑣A
2  

This solution has a simple graphic interpretation: The point where both face equal potential 

losses is exactly the point in the middle between the two true valuations: VWXVY
A

. Both players 

shift their valuation the same distance from their true valuation towards the other's true valua-

tion in the threat-equivalent equilibrium. 

The very important feature of this equilibrium is that the payoffs for both players are exactly 

the same as in the case where both players play truthful strategies: 

𝑃:
` 𝑣: + 𝑣A

2 ,
𝑣: + 𝑣A
2 = 1 −

𝑣:

2 𝑣: + 𝑣A
2

= 1 −
𝑣:

𝑣: + 𝑣A
= 𝑃:

` 𝑣:, 𝑣A  

𝑃A
(\) 𝑣: + 𝑣A

2 ,
𝑣: + 𝑣A
2 =

𝑣A

2 𝑣: + 𝑣A
2

=
𝑣A

𝑣: + 𝑣A
= 𝑃A

(\) 𝑣:, 𝑣A  

This result is truly remarkable. 𝑃A
(\) VWXVY

A
, VWXVY

A
 is the payoffs under the prescribed threat 

equivalent manipulation. 𝑃A
(\) 𝑣:, 𝑣A  is the payoff if both are truthful. Those two payoffs are 

the same, which means that if both players manipulate in this way, manipulation does not mat-

ter, and the solution preserves all the appealing properties of the ideal AW procedure. In par-

ticular, it is efficient and fair under the definition of Kalai and Smorodinsky. 

The justification that this equilibrium will be the outcome of the game is not without counter-

arguments, and it is by no means the claim of this paper that the threat-equivalent equilibrium 

is the only feasible equilibrium outcome here. Nevertheless, the comparison of losses in that 

way is a reasonable argument to justify an equilibrium – especially since AW normalizes the 
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maximal payoffs of both players, which means that they are comparable between the players. 

Thus, the argument of equivalent losses is a solid argument if players have similar risk prefer-

ences. 

Furthermore, the threat-equivalent equilibrium has the appealing property that it is the symmet-

ric point between the two true valuations. This could be another argument for a player to choose 

the according strategy, since both would be manipulating equally strong here. 

3.6  Symmetric Manipulation 

In the threat-equivalent equilibrium, both players manipulate equally strongly and they are in a 

Nash equilibrium. What if that latter characteristic is dropped, and it is only assumed that both 

players manipulate to the same extent?  

To answer this question, first assume that both shift their true valuation t points towards the 

other’s valuation, and demands remain compatible (𝑡 < VYZVW
A

 ). As the calculation below 

shows, the payoffs as under truth telling are preserved. The equality 𝑃:
` 𝑣: + 𝑡, 𝑣A − 𝑡 =

𝑃:
` 𝑣:, 𝑣A  means that the payoffs where both manipulate with t are the same as when both 

announce truthfully. This is true for both players. Thus, as long as demands remain compati-

ble and manipulation is symmetric, manipulation does not matter either. 

𝑃:
` 𝑣: + 𝑡, 𝑣A − 𝑡 = 1 −

𝑣:
𝑣: + 𝑡 + 𝑣A − 𝑡

= 1 −
𝑣:

𝑣: + 𝑣A
= 𝑃:

` 𝑣:, 𝑣A  

𝑃A
(\) 𝑣: + 𝑡, 𝑣A − 𝑡 =

𝑣A
𝑣: + 𝑡 + 𝑣A − 𝑡

=
𝑣A

𝑣: + 𝑣A
= 𝑃A

(\) 𝑣:, 𝑣A  

Now consider the case where both manipulate equally strongly, but too strong to keep demands 

compatible (𝑡 > VYZVW
A
). The obtained payoffs are as follows: 

𝑃:
\ 𝑣: + 𝑡, 𝑣A − 𝑡 =

𝑣:
𝑣: + 𝑡 + 𝑣A − 𝑡

=
𝑣:

𝑣: + 𝑣A
 

𝑃A
(`) 𝑣: + 𝑡, 𝑣A − 𝑡 = 1 −

𝑣A
𝑣: + 𝑡 + 𝑣A − 𝑡

= 1 −
𝑣A

𝑣: + 𝑣A
 

Those payoffs are certainly smaller than before. Comparing those payoffs with what they would 

have gotten under mutual truth telling (or in the threat-equivalent-equilibrium, or any case 

where they manipulate equally strong but remain compatible), one obtains: 
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𝑃:
\ 𝑣: + 𝑡, 𝑣A − 𝑡 − 𝑃:

` 𝑣:, 𝑣A =
𝑣:

𝑣: + 𝑣A
− 1 −

𝑣:
𝑣: + 𝑣A

=
2	𝑣:

𝑣: + 𝑣A
− 1 =

𝑣: − 𝑣A
𝑣: + 𝑣A

 

𝑃A
` 𝑣: + 𝑡, 𝑣A − 𝑡 − 𝑃A

\ 𝑣:, 𝑣A = 1 −
𝑣A

𝑣: + 𝑣A
−

𝑣A
𝑣: + 𝑣A

= 1 −
2	𝑣A

𝑣: + 𝑣A
=
𝑣: − 𝑣A
𝑣: + 𝑣A

 

Since 𝑣: < 𝑣A, both terms are negative, hence losses occur through over-manipulation (as be-

fore). Therefore, losses compared to honesty are the same for both players if both players over-

manipulate to the same extent, namely VWZVY
VWXVY

. The same results are also found for the remaining 

constellations, described in appendix 3. 

In conclusion of this last result, if both players manipulate equally strongly, effects are sym-

metric. If they remain compatible, the payoffs from truthfulness and hence AW’s appealing 

solution is preserved. If manipulation renders payoffs incompatible, both players face equal 

losses when they manipulate equally strongly. 

To summarize the main results from section 3: In the threat-equivalent equilibrium, both players 

manipulate. Yet, the same payoffs as in the AW-solution and hence all its properties re pre-

served. Due to the strategic interaction, manipulation cancels out and the payoffs are exactly 

the same as under truth-telling. Further, even if players are not in equilibrium but manipulate 

symmetrically, the AW properties are still preserved as long as manipulation does not change 

the initial distribution of objects. 

Thus, the calculations for this model show that there is quite a range of cases of unproblematic 

manipulation. There are good arguments why those situations are more likely to occur (sym-

metry, equal threats, equal losses). Manipulation has therefore less of a harmful impact on the 

AW mechanism.   

4. Conclusion: Assessing the Problem of Manipulation for AW 

The previous part has analyzed manipulation strategies for AW in the two objects case. Even 

though the problem of manipulation has not been shown to be negligible in all cases, there are 

circumstances where the problem is mitigated. First, since it has been shown that manipulation 

carries the danger of over-manipulation, imperfect information can be beneficial for the ap-

plicability of AW. The less knowledge a player has about an opponent's valuation, the riskier it 

is for her to manipulate. A player can create such uncertainty for her opponent by randomizing 

her own valuation, thereby creating the danger of over-manipulation for the opponent. 
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Second, if both players are expected to manipulate, there are still cases where manipulation has 

no negative effects on the outcome. As has been shown, there is an equilibrium which repro-

duces the payoffs from truthful AW. The same reasoning applies to all cases where both ma-

nipulate equally strongly as long as the initial allocation of objects does not change. 

Thus, AW is not as severely threatened by manipulation as it seems at first sight. Imperfect 

information, randomization of one's own strategy and mutual strategic manipulation mitigate 

the problem. Still, further theoretical and practical research is needed to deepen the understand-

ing of manipulative strategies in theory and practice. The approach taken here can serve as a 

starting point and a baseline approach for further modeling. 

What do these findings imply for the AW method and its applicability? The main insight from 

these findings is that manipulation may not be as ubiquitous as one might expect at first sight. 

The reason for this is that manipulation performs badly in a cost-benefit-analysis. Whilst this 

point was already partly implied by Schüssler’s model, a new finding in this paper is the fact 

that manipulation may not matter even though it occurs, and that also solutions which came 

about under manipulative behavior can still be fair. Thus, the AW mechanism can be seen as 

resilient against certain kinds untruthful behavior. This improves AW’s applicability to dispute 

settlements in areas where agents must be assumed to be pure egoists, for instance in the realm 

of international politics. Admittedly, conflicts of a political importance comparable to the Is-

rael-Egypt case above will probably not be settled by applying the AW procedure any time 

soon. Yet, even for those cases, AW may provide an interesting perspective on what a solution 

could look like. For other cases, such as the negotiation of coalition agreements, AW can pro-

vide a reasonable guideline, especially under time pressure, even when manipulative behavior 

most certainly occurs. 

The next crucial theoretical step is the generalization of the approach to cases with more than 

two goods. This complicates matters more than one might imagine at first sight. It is possible 

that the additional complication of the situation favors truthful behavior as more uncertainty is 

introduced. Unfortunately, analytical results in that direction are hard to obtain, as exemplified 

by the paper by Aziz et al (2015): The authors provide some general insights for the n-goods 

case, most prominently they prove the existence of Nash-equilibria under certain conditions. 

Yet, they are only able to characterize the impact on general welfare of those equilibria, which 

they show to be at least ¾ of the welfare from the original solution. They do not identify char-

acteristics of those solutions with regards to how this welfare is split. Thus, the question about 

fairness in AW with manipulation in the n-goods case remains unanswered. 
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A solution to those difficulties might be found in the computer simulation of AW. For example, 

an agent-based model in which manipulating and truthful players compete in multiple issue 

negotiations could be employed to assess which strategies prove to be most successful.  
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Appendix 1: Calculation of the Payoff Functions of AW 

This section gives the calculations for all cases that can occur for the payoff function of a player 

in AW with two objects. These results are referred to in section 0. 

Case (a) 

Relevant constraints: 𝑣: > 𝑣A and 𝑣: > 1 − 𝑣A. 

Initial allocation of objects: Player 1 receives object A; Player 2 receives object B. 

Redistribution: Since 𝑣: > 1 − 𝑣A, redistribution of 𝑥 percent of A from 1 to 2. 

Calculation of x: 1 − 𝑥 ∗ 𝑣: = (1 − 𝑣A) + 𝑥 ∗ 𝑣A 

   𝑥 = VWXVYZ:
VWXVY

= 1 − :
VWXVY

 

Note that for the calculation of x, the announced valuations are relevant. Below, the calcula-
tion of the payoff also depends on the true valuation. 

Payoff for player 1: 𝑃:
\ = 1 − 𝑥 ∗ 𝑣: 

   𝑃:
\ = 1 − (1 − :

VWXVY
) ∗ 𝑣: 

   𝑃:
(\) = VW

VWXVY
 

Case (b) 

Relevant constraints: 𝑣: < 𝑣A and 1 − 𝑣: < 𝑣A. 

Initial allocation of objects: Player 1 receives object B; Player 2 receives object A. 

Redistribution: Since 1 − 𝑣: < 𝑣A, redistribution of x percent of A from 2 to 1. 

Calculation of x: 1 − 𝑣: + 𝑥 ∗ 𝑣: = (1 − 𝑥) ∗ 𝑣A 

   𝑥 = VWXVYZ:
VWXVY

= 1 − :
VWXVY

 

Payoff for player 1: 𝑃:
` = 1 − 𝑣: + 𝑥 ∗ 𝑣: 

   𝑃:
` = 1 − 𝑣: + (1 − :

VWXVY
) ∗ 𝑣: 

   𝑃:
` = 1 − VW

VWXVY
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Case (c) 

Relevant constraints: 𝑣: > 𝑣A and 𝑣: < 1 − 𝑣A. 

Initial allocation of objects: Player 1 receives object A; Player 2 receives object B. 

Redistribution: Since 𝑣: < 1 − 𝑣A, redistribution of x percent of B from 2 to 1. 

Calculation of x: 𝑣: + 𝑥 ∗ 1 − 𝑣: = (1 − 𝑥) ∗ (1 − 𝑣A) 

   𝑥 = :ZVWZVY
AZVWZVY

 

Payoff for player 1: 𝑃:
. = 𝑣: + 𝑥 ∗ (1 − 𝑣:) 

   𝑃:
. = 𝑣: +

:ZVWZVY
AZVWZVY

∗ (1 − 𝑣:) 

   𝑃:
(.) = 𝑣: ∗ (1 −

:ZVWZVY
AZVWZVY

)+	:ZVWZVY
AZVWZVY

 

   𝑃:
. = 𝑣:(

:
AZVWZVY

)+	:ZVWZVY
AZVWZVY

 

   𝑃:
. = VWX:ZVWZVY

AZVWZVY
= VWZ:

AZVWZVY
+ 1 = 1 − :ZVW

(:ZVW)X(:ZVY)
 

Case (d) 

Relevant constraints: 𝑣: < 𝑣A and 1 − 𝑣: > 𝑣A. 

Initial allocation of objects: Player 1 receives object B; Player 2 receives object A. 

Redistribution: Since 1 − 𝑣: > 𝑣A, redistribution of x percent of B from 1 to 2. 

Calculation of x: 1 − 𝑥 ∗ 1 − 𝑣: = 𝑣A + 𝑥 ∗ (1 − 𝑣A) 

   1 − 𝑥 − 𝑣: + 𝑥 ∗ 𝑣: = 𝑣A + 𝑥 − 𝑥 ∗ 𝑣A 

   1 − 𝑣: − 𝑣A = 2𝑥 − 	𝑥 ∗ 𝑣: − 𝑥 ∗ 𝑣A 

   𝑥 = :ZVWZVY
AZVWZVY

 

Payoff for player 1: 𝑃:
. = 1 − 𝑥 ∗ (1 − 𝑣:) 

   𝑃:
(.) = 1 − :ZVWZVY

AZVWZVY
∗ (1 − 𝑣:) 

   𝑃:
. = :ZVW

AZVWZVY
= :ZVW

(:ZVW)X(:ZVY)
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Appendix 2: Optimal manipulation, potential gains and losses 

This section completes the calculations for the result that the optimal strategy for player 1 

against an honest player 2 is to let 𝑣: approach 𝑣A for constellations II and III. Also, the result 

that the potential gains from optimal manipulation are always smaller than the potential losses 

from over-manipulation are shown for constellations II and III. 

Optimal strategy in Constellation II 

𝑣A lies in II, hence 1 − 𝑣: < 𝑣A < 𝑣:. Depending on 1's choice of 𝑣:, either payoff function 

(a), (b), or (d) is applicable. The payoff functions and the local maxima are the same as in 

constellation I, but the global maximum is different: 

• Local maximum in (a): 𝑃:
(\)i\j = VW

A	VY
 for 𝑣: = 𝑣A 

• Local maximum in (b): 𝑃:
(`)i\j = 1 − VW

A	VY
 for 𝑣: = 𝑣A 

• Local maximum in (d): 𝑃:
(a)i\j = (1 − 𝑣:) for 𝑣: = 1 − 𝑣A 

From 1 − 𝑣: < 𝑣A < 𝑣: follows 

 𝑃:
(\)i\j > 𝑃:

(`)i\j and 𝑃:
(\)i\j > 𝑃:

(a)i\j.  

The global maximum is 𝑃:i\j = 𝑃:
(\)i\j. Therefore, player 1's optimal strategy is to choose 

𝑣: = 𝑣A but still a little above 𝑣A to stay in (a) (technically correct: 𝑣: = 𝑣A + 𝜀 with 𝜀 → 0 

and 𝜀 > 0). Fig. 3 illustrates the payoff function for the example 𝑣: = 0.8 and 𝑣A = 0.7. 

Fig. 3: Exemplary payoff function for constellation II with 𝑣: = 0.8 and 𝑣A = 0.7 
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Gains and losses from manipulation in constellation II 

If player 1's optimal manipulation strategy works, her payoff against the honest player 2 is  

   𝑃:
(\)i\j = VW

A	VY
.  

If he only slightly manipulates too much, the payoff function switches to 𝑃:
(`), and her maxi-

mal payoff for failed manipulation is  

   𝑃:
(`)k\-l = 1 − VW

AVY
.  

The payoff from strategy 'honesty' is 

   𝑃:
(\)/"mnop = VW

VWX	VY
. 

Player 1 could at the most gain 𝑔 = 𝑃:
(\)i\j − 𝑃:

(\)/"mnop. On the other hand, if her manipula-

tion fails, he will at least lose 𝑙 = 𝑃:
(\)/"mnop − 𝑃:

(`)k\-l. Calculating the difference between 

maximal potential gains and minimal potential losses results in the term 

   𝑔 − 𝑙 = 𝑃:
(\)i\j+𝑃:

(`)k\-l − 2	𝑃:
(\)/"mnop = 1 − AVW

VWXVY
.  

In II, 𝑣: > 𝑣A, and therefore 

   𝑔 − 𝑙 = 1 − AVW
VWXVY

< 0. 
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Optimal strategy in constellation III: 

𝑣A lies in III, hence 𝑣A < 1 − 𝑣: < 𝑣: < 1 − 𝑣A. Depending on 1's choice of 𝑣:, either payoff 

function (a), (c), or (d) is applicable. The payoff functions are different than in constellation I 

and II. Also, local and global maxima are different than in I and II. 

• For 𝑣: > 1 − 𝑣A: 𝑃:
(\) = VW

VWXVY
; which is strictly decreasing with 𝑣:; local maximum in 

(a): 𝑃:
(\)i\j = 𝑣: for 𝑣: = 1 − 𝑣A 

• For 𝑣A < 𝑣: < 1 − 𝑣A: 𝑃:
(.) = 1 − (:ZVW)

(:ZVW)X(:ZVY)
; which is strictly decreasing with 𝑣:; 

local maximum in (c): 𝑃:
(.)i\j = 1 − (:ZVW)

A(:ZVY)
 for 𝑣: = 𝑣A 

• For 𝑣: < 𝑣A: 𝑃:
(a) = :ZVW

(:ZVW)X(:ZVY)
, which is strictly increasing with 𝑣:; local maximum 

in (d): 𝑃:
(a)i\j = (:ZVW)

A(:ZVY)
  for 𝑣: = 𝑣A 

From 𝑣A < 1 − 𝑣: < 𝑣: < 1 − 𝑣A follows 

 𝑃:
(.)i\j > 𝑃:

(a)i\j and 𝑃:
(.)i\j > 𝑃:

(\)i\j. 

To see the latter, calculate 𝑃:
(.)i\j − 𝑃:

(\)i\j = :ZVW ∗(:ZAVY)
A(:ZVY)

> 0 (since 𝑣A < 0.5, all factors  

are < 0. The global maximum is therefore 𝑃:i\j = 𝑃:
(.)i\j. This means that player 1's opti-

mal strategy is 𝑣: = 𝑣A but still a little above 𝑣A to stay in (c) (technically correct: 𝑣: = 𝑣A +

𝜀 with 𝜀 → 0 and 𝜀 > 0). Fig. 4 illustrates the payoff function for 𝑣: = 0.8 and 𝑣A = 0.3. 

Fig. 4: Exemplary payoff function for constellation III with 𝑣: = 0.8 and 𝑣A = 0.3 
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Gains and losses from manipulation in constellation III 

If player 1's optimal manipulation strategy works, her payoff against the honest player 2 is  

   𝑃:
(.)i\j = 1 − (:ZVW)

A(:ZVY)
.  

If he only slightly manipulates too much, the payoff function switches to 𝑃:
(a), and her maximal 

payoff for failed manipulation is  

   𝑃:
(a)k\-l = (:ZVW)

A(:ZVY)
.  

The payoff from strategy 'honesty' is 

   𝑃:
(.)/"mnop = 1 − (:ZVW)

(:ZVW)X(:ZVY)
. 

Player 1 could at the most gain 𝑔 = 𝑃:i\j − 𝑃:/"mnop. On the other hand, if her manipulation 

fails, he will at least lose 𝑙 = 𝑃:/"mnop − 𝑃:
k\-l. Calculating the difference between maximal po-

tential gains and minimal potential losses results in the term 

   𝑔 − 𝑙 = 𝑃:
(.)i\j+𝑃:

k\-l − 2	𝑃:/"mnop =
A(:ZVW)

(:ZVW)X(:ZVY)
− 1.  

In III, 1 − 𝑣A > 1 − 𝑣:, and therefore 

   𝑔 − 𝑙 = A(:ZVW)
(:ZVW)X(:ZVY)

− 1 < 0. 

 

 

 

Appendix 3: Calculations for the threat-equivalent equilibrium for other constellations 

Constellation III 

Consider first true valuation constellation III with 𝑣: > 𝑣A and 1 − 𝑣A > 𝑣: (See Fig. 2). Again, 

both players manipulate their valuation towards the other's true valuation, and also for every 

Nash equilibrium 𝑣: = 𝑣A = 𝑣. However, two types of equilibria need to be distinguished in 

III, namely either 𝑣 > 0.5 or 𝑣 < 0.5. 

In the case 𝑣 > 0.5, the payoff functions are the same as in constellation I, only with reversed 

roles of the players. The proof for the threat-equivalent equilibrium and the resulting payoff 

therefore remains the same. 
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In the case 𝑣 < 0.5, the payoff functions are 

• 𝑃:
(.) = 1 − :ZVW

(:ZVW)X(:ZVY)
 and 𝑃A

(a) = :ZVY
(:ZVW)X(:ZVY)

 for compatible demands 𝑣: > 𝑣A 

• 𝑃:
(a) = :ZVW

(:ZVW)X(:ZVY)
 and 𝑃A

(.) = 1 − :ZVY
(:ZVW)X(:ZVY)

 for incompatible demands 𝑣: < 𝑣A. 

The threat-equivalent equilibrium is then calculated along similar lines: 

𝑃:
. (𝑣, 𝑣) − 𝑃:

a (𝑣, 𝑣) = 𝑃A
a (𝑣, 𝑣) − 𝑃A

. (𝑣, 𝑣) 

1 −
1 − 𝑣:
2(1 − 𝑣) −

1 − 𝑣:
2(1 − 𝑣) =

1 − 𝑣A
2(1 − 𝑣) − (1 −

1 − 𝑣A
2 1 − 𝑣 ) 

1 −
1 − 𝑣:
1 − 𝑣 =

1 − 𝑣A
(1 − 𝑣) − 1 

𝑣 =
𝑣: + 𝑣A
2  

The payoffs are again the same as from truth-telling. 

𝑃:
. 𝑣: + 𝑣A

2 ,
𝑣: + 𝑣A
2 = 1 −

1 − 𝑣:

2 − 2 𝑣: + 𝑣A
2

= 1 −
1 − 𝑣:

(1 − 𝑣:) + (1 − 𝑣A)
= 𝑃:

. 𝑣:, 𝑣A  

𝑃A
(a) 𝑣: + 𝑣A

2 =
1 − 𝑣A

2 − 2 𝑣: + 𝑣A
2

=
1 − 𝑣A

(1 − 𝑣:) + (1 − 𝑣A)
= 𝑃A

a 𝑣:, 𝑣A  

Now consider symmetric manipulation. For compatible manipulation (𝑡 < VYZVW
A

 ) in constella-

tion III: 

𝑃:
. 𝑣: + 𝑡, 𝑣A − 𝑡 = 1 −

1 − 𝑣:
1 − 𝑣: + 𝑡 + 1 − 𝑣A − 𝑡

= 1 −
1 − 𝑣:

1 − 𝑣: + 1 − 𝑣A

= 𝑃:
. 𝑣:, 𝑣A  

𝑃A
a 𝑣: + 𝑡, 𝑣A − 𝑡 =

1 − 𝑣A
(1 − (𝑣: + 𝑡)) + (1 − (𝑣A − 𝑡))

=
1 − 𝑣A

(1 − 𝑣:) + (1 − 𝑣A)

= 𝑃A
a 𝑣:, 𝑣A  

For incompatible manipulation (𝑡 > VYZVW
A

 ) in constellation III, payoff functions are once again 

reversed.  
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𝑃:
a 𝑣: + 𝑡, 𝑣A − 𝑡 =

1 − 𝑣:
(1 − (𝑣: + 𝑡)) + (1 − (𝑣A − 𝑡))

 

𝑃A
. 𝑣: + 𝑡, 𝑣A − 𝑡 = 1 −

1 − 𝑣A
1 − 𝑣: + 𝑡 + 1 − 𝑣A − 𝑡

= 1 −
1 − 𝑣A

1 − 𝑣: + 1 − 𝑣A
 

Comparing this with the payoffs from mutual truthfulness 

𝑃:
a 𝑣: + 𝑡, 𝑣A − 𝑡 − 𝑃:

. 𝑣:, 𝑣A =
1 − 𝑣:

(1 − 𝑣:) + (1 − 𝑣A)
− 1 −

1 − 𝑣:
1 − 𝑣: + 1 − 𝑣A

=
2 ∗ 1 − 𝑣:

1 − 𝑣: + 1 − 𝑣A
− 1 =

2 ∗ 1 − 𝑣: − ( 1 − 𝑣: + 1 − 𝑣A )
1 − 𝑣: + 1 − 𝑣A

=
1 − 𝑣: − 1 − 𝑣A
1 − 𝑣: + 1 − 𝑣A

 

𝑃A
. 𝑣: + 𝑡, 𝑣A − 𝑡 − 𝑃A

a 𝑣:, 𝑣A = 1 −
1 − 𝑣A

1 − 𝑣: + 1 − 𝑣A
−

1 − 𝑣A
1 − 𝑣: + 1 − 𝑣A

= 1 −
2 ∗ 1 − 𝑣A

1 − 𝑣: + 1 − 𝑣A
=

1 − 𝑣: + 1 − 𝑣A − 2 ∗ 1 − 𝑣A
1 − 𝑣: + 1 − 𝑣A

=
1 − 𝑣: − 1 − 𝑣A
1 − 𝑣: + 1 − 𝑣A

 

The potential losses are hence also shown to be of the same magnitude from symmetric over-

manipulation. 

Constellation II 

What is now left to complete the result for all cases is constellation II with 𝑣: > 𝑣A and 1 −

𝑣A < 𝑣:. No new calculations are necessary: If, in equilibrium, 𝑣 > 0.5, payoff functions are 

the same as in constellation I, but with reversed roles of the players. If 𝑣 < 0.5, the payoff 

functions are the same as in the case 𝑣 < 0.5 in constellation III. If not in equilibrium, due to 

the assumed symmetry of manipulation, no switches in payoff functions occur and hence the 

same logic can be applied also to those cases. The result is now proven for all possible constel-

lations. 
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